This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Heat Capacity of Toluene Dimethyl Formamide Mixtures

T. E. Vittal Prasad^a; A. Rajiah^a; D. H. L. Prasad^a ^a Properties Group, Chemical Engineering Division, Indian Institute of Chemical Technology, Hyderabad, India

To cite this Article Prasad, T. E. Vittal, Rajiah, A. and Prasad, D. H. L.(1994) 'Heat Capacity of Toluene Dimethyl Formamide Mixtures', Physics and Chemistry of Liquids, 27: 4, 215 – 218 **To link to this Article: DOI:** 10.1080/00319109408029529

URL: http://dx.doi.org/10.1080/00319109408029529

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1994, Vol. 27, pp. 215–218 Reprints available directly from the publisher Photocopying permitted by license only

HEAT CAPACITY OF TOLUENE + DIMETHYL FORMAMIDE MIXTURES*

T. E. VITTAL PRASAD, A. RAJIAH and D. H. L. PRASAD⁺

Properties Group, Chemical Engineering Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India

(Received 9 September 1993)

Heat Capacity data of the binary mixtures of: toluene + dimethyl formamide – measured in the temperature range of $20-50^{\circ}$ C using a differential heating technique are reported. The measurements are well represented by the mixture rules proposed by Jamieson and Cartwright, and Teja.

KEY WORDS: Heat capacity, mixtures, toluene, dimethyl formamide.

INTRODUCTION

The importance of liquid heat capacity data in process design calculations needs no fresh mention. In continuation of our experimental^{1,2} and theoretical³ work on the heat capacity of liquids and liquid mixtures, this work on the heat capacity of toluene + dimethyl formamide mixtures is undertaken.

APPARATUS AND EXPERIMENTAL

A simplified form of differential heating/cooling apparatus, similar to the one presented by Spear⁴ and described in detail earlier^{1,2}, is used for the measurements. The experimental procedure and the method of treating the time-temperature observations, to calculate the liquid (liquid-mixture) heat capacity are also given in our earlier papers^{1,2}.

RESULTS AND DISCUSSION

The physical properties of the pure liquids are compared with the literature data⁵ in Table 1. Table 2 compares the pure liquid heat capacity measurements of the present

Downloaded At: 08:20 28 January 2011

^{*} IICT Communication No. 3284

⁺ Author for Correspondence.

Substance	Density at 25°C, g/cc		Refractive index at 20 °C		Normal boiling point, °C	
	Present	Lit ⁵	Present	Lit ⁵	Present	Lit ⁵
Dimethyl	0.9448	0.9445	1.4300	1.4301	152.8	153
Toluene	0.8625	0.8623	1.5000	1.49693	110.5	110.629

Table 1 Comparison of the physical properties of pure liquids with literature data.

Table 2 Comparison of the heat capacity of pure liquids with literature data $^{6.7}$.

Substance	Temperature °C	Heat Capacity, Cal/g. °C		
		Present	Literature	
Toluene	20	0.416	0.415	
	30	0.420	0.419	
	40	0.424	0.423	
	50	0.430	0.429	
Dimethyl formamide	20	0.4920	0.4918	
,	30	0.4980	0.4976	
	40	0.5030	0.5025	
	50	0.5060	0.5058	

work with the literature data^{6,7}. The measurements on mixtures are presented and compared with the following estimation methods in Table 3. Weight fraction average

$$C_{Pmix} = W_1 C_{P1} + W_2 C_{P2} \tag{1}$$

Jamieson and Cartwright method⁸

$$C_{P_{mix}} = (W_1 C_{P1} + W_2 C_{P2})(1 + a + \beta)$$
⁽²⁾

where

$$a = (0.00141) |H_1 - H_2|^{0.88}$$
(3)

$$\beta = 5 \times 10^{-5} |H_1 - H_2| \sin (360 W_2) \tag{4}$$

H = enthalpy of vaporization

and Teja's method⁹

$$C_{Pmix}[T_R]_{mix} = X_1 C_{P1}[T_{R1}] + X_2 C_{P2}[T_{R2}]$$
(5)

Temp. °C	Weight % of toluene	Heat Capacity, Cal/g. °C				
		Experimental	Weight fraction average method	Jamieson & CartWright method	Teja's method	
20	9.2382	0.4851	0.4849	0.5062	0.4853	
	18.6340	0.4780	0.4778	0.4987	0.4773	
	28.1918	0.4707	0.4705	0.4932	0.4697	
	37.9158	0.4634	0.4632	0.4838	0.4624	
	47.8096	0.4558	0.4556	0.4765	0.4548	
	57.8787	0.4482	0.4480	0.4694	0.4472	
	68.1273	0.4404	0.4402	0.4594	0.4395	
	78.5604	0.4325	0.4323	0.4513	0.4317	
	89.1828	0.4244	0.4242	0.4427	0.4239	
30	9.2382	0.4910	0.4908	0.5124	0.4912	
	18.6340	0.4863	0.4864	0.5046	0.4829	
	28.1918	0.4762	0.4760	0.4988	0.4753	
	37.9158	0.4686	0.4684	0.4969	0.4676	
	47.8096	0.4609	0.4607	0.4819	0.4599	
	57.8787	0.4530	0.4528	0.4732	0.4520	
	68.1273	0.4450	0.4448	0.4644	0.4441	
	78.5604	0.4389	0.4387	0.4559	0.4381	
	89.1828	0.4286	0.4284	0.4472	0.4281	
40	9.2382	0.4959	0.4957	0.5157	0.4961	
	18.6340	0.4885	0.4883	0.5087	0.4878	
	28.1918	0.4890	0.4807	0.5037	0.4800	
	37.9158	0.4733	0.4731	0.4939	0.4723	
	47.8096	0.4654	0.4652	0.4866	0.4644	
	57.8787	0.4575	0.4573	0.4783	0.4564	
	68.1273	0.4494	0.4492	0.4689	0.4484	
	78.5604	0.4411	0.4409	0.4603	0.4404	
	89.1828	0.4327	0.4325	0.4515	0.4322	
50	9.2382	0.4991	0.4989	0.5208	0.4993	
	18.6340	0.4920	0.4918	0.5134	0.4913	
	28.1918	0.4847	0.4845	0.5077	0.4839	
	37.9155	0.4774	0.4772	0.4982	0.4765	
	47.8097	0.4698	0.4696	0.4912	0.4689	
	57.8787	0.4622	0.4620	0.4827	0.4613	
	68.1273	0.4544	0.4542	0.4742	0.4535	
	78.5604	0.4465	0.4463	0.4659	0.4458	
	89.1828	0.4384	0.4382	0.4574	0.4378	

Table 3 Mixture heat capacity data of toluene + dimethyl formamide system and comparison with estimation methods.

where X =mole fraction

$$T_R = T/T_C; [T_R]_{mix} = T/T_{Cm}$$
(6)

and

$$T_{Cm} = W_1 T_{C1} + W_2 T_{C2} \tag{7}$$

For this system, the weight fraction average method gives the best estimate with a percent average absolute deviation (PAAD) of 0.04 compared to a PAAD of 4.3 in using Jamieson and Cart Wright method and a PAAD of 0.2 in using Teja's method.

References

- 1. T. E. Vittal Prasad, A. Rajiah, D. H. L. Prasad and V. Narayana Swamy, Heat Capacity of Alkylbenzene + Chloroethane Binary Mixtures, *Physics and Chemistry of Liquids*, **20**, 157 (1989).
- 2. H. Usha Rao, A. Rajiah and D. H. L. Prasad, A Simple Apparatus for Heat Capacity of Liquids, Indian Chemical Engineer, XXXII, TRans, 15 (1990).
- 3. T. E. Vittal Prasad, A. Rajiah and D. H. L. Prasad, On the Dependence of Liquid Heat Capacity on Temperature and Molecular Structure, Chemical Engineering Journal (in Press).
- 4. N. H. Spear, Measuring Specific Heat of Liquids at High Temperautres Small Sample Apparatus, Analytical Chemistry, 24 (6), 938 (1952).
- Kirk-Othmer, Encyclopedia of Chemical Technology, Third Edition 11, 264; 21, 382; 23, 246, (Wiley-Interscience, New York, 1978-1984).
- R. R. Dreisbach, Physical Properties of Chemical Compounds, Vols. I-III (American Chemical Society, 1955-1961).
- 7. R. W. Gallant, *Physical Properties of Hydrocarbons*, Vols. 1-2 (Gulf Publishing Co., Houston, Texas, 1968).
- D. T. Jamieson and G. CartWright, Properties of Binary Liquid Mixtures; Heat Capacity, NEL Report No. 648 (NEL, East Kilbridge, UK, 1978).
- 9. A. S. Teja, Simple Method for the Calculation of Heat Capacity of Liquid Mixtures, J. Chem. Eng. Data, 28, 83 (1983).